1,503 research outputs found

    High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out

    Get PDF
    The development of wide-area cryogenic light detectors with good energy resolution is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally-multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. To satisfy the large surface requirement (several cm2^2) KIDs are deposited on an insulating substrate that converts the impinging photons into phonons. A fraction of phonons is absorbed by the KID, producing a signal proportional to the energy of the original photons. The potential of this technique was proved by the CALDER project, that reached a baseline resolution of 154±\pm7 eV RMS by sampling a 2×\times2 cm2^2 Silicon substrate with 4 Aluminum KIDs. In this paper we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82±\pm4 eV by sampling the same substrate with a single Aluminum KID

    Multi-mode TES bolometer optimization for the LSPE-SWIPE instrument

    Full text link
    In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power and operating temperature of the cryostat during the flight.Comment: in Journal of Low Temperature Physics, 05 January 201

    Test particle motion in a gravitational plane wave collision background

    Get PDF
    Test particle geodesic motion is analysed in detail for the background spacetimes of the degenerate Ferrari-Ibanez colliding gravitational wave solutions. Killing vectors have been used to reduce the equations of motion to a first order system of differential equations which have been integrated numerically. The associated constants of the motion have also been used to match the geodesics as they cross over the boundary between the single plane wave and interaction zones.Comment: 11 pages, 6 Postscript figure

    Active shielding design and optimization of a wireless power transfer (WPT) system for automotive

    Get PDF
    This study deals with the optimization of a shielding structure composed by multiple active coils for mitigating the magnetic field in an automotive wireless power transfer (WPT) system at 85 kHz. Each active coil is independently powered and the most suitable excitation is obtained by an optimization procedure based on the Gradient Descent algorithm. The proposed procedure is described and applied to shield the magnetic field beside an electric vehicle (EV) equipped with SAE standard coils, during wireless charging. The obtained results show that the magnetic field in the most critical area is significantly reduced (i.e., approximately halved) with a very limited influence on the electrical performances (i.e., WPT efficiency decreases by less than 1 percentage point compared to the case without active shielding)

    Development of Lumped Element Kinetic Inductance Detectors for the W-Band

    Full text link
    We are developing a Lumped Element Kinetic Inductance Detector (LEKID) array able to operate in the W-band (75-110 GHz) in order to perform ground-based Cosmic Microwave Background (CMB) and mm-wave astronomical observations. The W-band is close to optimal in terms of contamination of the CMB from Galactic synchrotron, free-free, and thermal interstellar dust. In this band, the atmosphere has very good transparency, allowing interesting ground-based observations with large (>30 m) telescopes, achieving high angular resolution (<0.4 arcmin). In this work we describe the startup measurements devoted to the optimization of a W-band camera/spectrometer prototype for large aperture telescopes like the 64 m SRT (Sardinia Radio Telescope). In the process of selecting the best superconducting film for the LEKID, we characterized a 40 nm thick Aluminum 2-pixel array. We measured the minimum frequency able to break CPs (i.e. hν=2Δ(Tc)=3.5kBTch\nu=2\Delta\left(T_{c}\right)=3.5k_{B}T_{c}) obtaining ν=95.5\nu=95.5 GHz, that corresponds to a critical temperature of 1.31 K. This is not suitable to cover the entire W-band. For an 80 nm layer the minimum frequency decreases to 93.2 GHz, which corresponds to a critical temperature of 1.28 K; this value is still suboptimal for W-band operation. Further increase of the Al film thickness results in bad performance of the detector. We have thus considered a Titanium-Aluminum bi-layer (10 nm thick Ti + 25 nm thick Al, already tested in other laboratories), for which we measured a critical temperature of 820 mK and a cut-on frequency of 65 GHz: so this solution allows operation in the entire W-band.Comment: 16th International Workshop on Low Temperature Detectors, Grenoble 20-24 July 2015, Journal of Low Temperature Physics, Accepte

    Detailed study of the microwave emission of the supernova remnant 3C 396

    Get PDF
    We have observed the supernova remnant 3C~396 in the microwave region using the Parkes 64-m telescope. Observations have been made at 8.4 GHz, 13.5 GHz, and 18.6 GHz and in polarisation at 21.5 GHz. We have used data from several other observatories, including previously unpublished observations performed by the Green Bank Telescope at 31.2 GHz, to investigate the nature of the microwave emission of 3C 396. Results show a spectral energy distribution dominated by a single component power law emission with α=(0.364±0.017)\alpha=(-0.364 \pm 0.017). Data do not favour the presence of anomalous microwave emission coming from the source. Polarised emission at 21.5 GHz is consistent with synchrotron-dominated emission. We present microwave maps and correlate them with infrared (IR) maps in order to characterise the interplay between thermal dust and microwave emission. IR vs. microwave TT plots reveal poor correlation between mid-infrared and microwave emission from the core of the source. On the other hand, a correlation is detected in the tail emission of the outer shell of 3C 396, which could be ascribed to Galactic contamination.Comment: published in MNRA

    Development of Lumped Element Kinetic Inductance Detectors for NIKA

    Get PDF
    Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the N\'eel Iram Kids Array (NIKA) collaboration has been to investigate the suitability of these detectors for deployment at the 30-meter IRAM telescope located on Pico Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID), using quarter wavelength resonators, the resonant circuit of a LEKID consists of a discrete inductance and capacitance coupled to a feedline. A high and constant current density distribution in the inductive part of these resonators makes them very sensitive. Due to only one metal layer on a silicon substrate, the fabrication is relatively easy. In order to optimize the LEKIDs for this application, we have recently probed a wide variety of individual resonator and array parameters through simulation and physical testing. This included determining the optimal feed-line coupling, pixel geometry, resonator distribution within an array (in order to minimize pixel cross-talk), and resonator frequency spacing. Based on these results, a 144-pixel Aluminum array was fabricated and tested in a dilution fridge with optical access, yielding an average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2 under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2 polarizations will be presented. Also first optical measurements of a titanium nitride array will be discussed.Comment: 5 pages, 12 figures; ISSTT 2011 Worksho

    Neutrino current in a gravitational plane wave collision background

    Full text link
    The behaviour of a massless Dirac field on a general spacetime background representing two colliding gravitational plane waves is discussed in the Newman-Penrose formalism. The geometrical properties of the neutrino current are analysed and explicit results are given for the special Ferrari-Ibanez solution.Comment: 17 pages, 6 Postscript figures, accepted by International Journal of Modern Physics

    New radio observations of anomalous microwave emission in the HII region RCW175

    Get PDF
    We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to our spectral coverage and angular resolution, we have been able to derive one of the first AME maps, at 13.5GHz, showing clear evidence that the bulk of the AME arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5GHz of 2.2\pm0.2(rand.)\pm0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.Comment: Accepted for publication in the Astrophysical Journa
    corecore